SNSB
Summer Term 2013
Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean

Seminar 6

(S6.1) Verify that Hilbert theorem 1.6 .13 is a special case of the Finite Sums theorem.
(S6.2) Let X be a Hausdorff topological space and $\left(x_{n}\right)_{n \geq 1}$ be a sequence in X.
(i) For every $p \in \beta \mathbb{Z}_{+}$, the following are satisfied:
(a) The p-limit of $\left(x_{n}\right)$, if exists, is unique.
(b) If X is compact, then $p-\lim x_{n}$ exists.
(c) If $f: X \rightarrow Y$ is continuous and $p-\lim x_{n}=x$, then $p-\lim f\left(x_{n}\right)=f(x)$.
(ii) $\lim _{n \rightarrow \infty} x_{n}=x$ implies $p-\lim x_{n}=x$ for every non-principal ultrafilter p.
(S6.3) Let $\left(x_{n}\right)_{n \geq 1},\left(y_{n}\right)_{n \geq 1}$ be bounded sequences in \mathbb{R}, and p be a non-principal ultrafilter on \mathbb{Z}_{+}.
(i) (x_{n}) has a unique p-limit. If $a \leq x_{n} \leq b$, then $a \leq p-\lim x_{n} \leq b$.
(ii) For any $c \in \mathbb{R}, p-\lim c x_{n}=c \cdot p-\lim x_{n}$.
(iii) $p-\lim \left(x_{n}+y_{n}\right)=p-\lim x_{n}+p-\lim y_{n}$.
(S6.4) Let D be set and let \mathcal{A} be a subset of $\mathcal{P}(D)$ which has the finite intersection property. Then there is an ultrafilter p on D such that $\mathcal{A} \subseteq p$.
(S6.5) Let $\mathcal{A}=\left\{A \subseteq \mathbb{Z}_{+} \mid \mathbb{Z}_{+} \backslash A\right.$ is finite $\}$. Prove that there exists a non-principal ultrafilter \mathcal{U} on \mathcal{D} such that $\mathcal{A} \subseteq \mathcal{U}$.
(S6.6) Let D be set, let \mathcal{F} be a filter on D, and let $A \subseteq D$. Then $A \notin \mathcal{F}$ if and only if there is some ultrafilter \mathcal{U} with $\mathcal{F} \cup\{D \backslash A\} \subseteq \mathcal{U}$.
(S6.7) Let D be a set and let $\mathcal{G} \subseteq \mathcal{P}(D)$. The following are equivalent.
(i) Whenever $r \geq 1$ and $D=\bigcup_{i=1}^{r} C_{i}$, there exists $i \in[1, r]$ and $G \in \mathcal{G}$ such that $G \subseteq C_{i}$.
(ii) There is an ultrafilter \mathcal{U} on d such that for every member A of \mathcal{U}, there exists $G \in \mathcal{G}$ with $G \subseteq A$.
(S6.8) Let $\mathcal{U} \subseteq \mathcal{P}(D)$. The following are equivalent:
(i) \mathcal{U} is an ultrafilter on D.
(ii) \mathcal{U} has the finite intersection property and for each $A \in \mathcal{P}(D) \backslash \mathcal{U}$ there is some $B \in \mathcal{U}$ such that $A \cap B=\emptyset$.
(iii) \mathcal{U} is maximal with respect to the finite intersection property. (That is, \mathcal{U} is a maximal member of $\{\mathcal{V} \subseteq \mathcal{P}(D) \mid \mathcal{V}$ has the finite intersection property $\}$.)
(iv) \mathcal{U} is a filter on D and for any collection C_{1}, \ldots, C_{n} of subsets of D, if $\bigcup_{i=1}^{n} C_{i} \in \mathcal{U}$, then $C_{j} \in \mathcal{U}$ for some $j=1, \ldots n$.
(v) \mathcal{U} is a filter on D and for all $A \subseteq D$ either $A \in \mathcal{U}$ or $D \backslash A \in \mathcal{U}$.

