SNSB Summer Term 2013 Ergodic Theory and Additive Combinatorics Laurențiu Leuștean

05.06.2013

Seminar 6

(S6.1) Verify that Hilbert theorem 1.6.13 is a special case of the Finite Sums theorem.

(S6.2) Let X be a Hausdorff topological space and $(x_n)_{n\geq 1}$ be a sequence in X.

- (i) For every $p \in \beta \mathbb{Z}_+$, the following are satisfied:
 - (a) The *p*-limit of (x_n) , if exists, is unique.
 - (b) If X is compact, then $p \lim x_n$ exists.
 - (c) If $f: X \to Y$ is continuous and $p \lim x_n = x$, then $p \lim f(x_n) = f(x)$.
- (ii) $\lim_{n \to \infty} x_n = x$ implies $p \lim x_n = x$ for every non-principal ultrafilter p.

(S6.3) Let $(x_n)_{n\geq 1}, (y_n)_{n\geq 1}$ be bounded sequences in \mathbb{R} , and p be a non-principal ultrafilter on \mathbb{Z}_+ .

- (i) (x_n) has a unique *p*-limit. If $a \le x_n \le b$, then $a \le p \lim x_n \le b$.
- (ii) For any $c \in \mathbb{R}$, $p \lim cx_n = c \cdot p \lim x_n$.
- (iii) $p \lim(x_n + y_n) = p \lim x_n + p \lim y_n$.

(S6.4) Let D be set and let \mathcal{A} be a subset of $\mathcal{P}(D)$ which has the finite intersection property. Then there is an ultrafilter p on D such that $\mathcal{A} \subseteq p$.

(S6.5) Let $\mathcal{A} = \{A \subseteq \mathbb{Z}_+ \mid \mathbb{Z}_+ \setminus A \text{ is finite}\}$. Prove that there exists a non-principal ultrafilter \mathcal{U} on \mathcal{D} such that $\mathcal{A} \subseteq \mathcal{U}$.

(S6.6) Let *D* be set, let \mathcal{F} be a filter on *D*, and let $A \subseteq D$. Then $A \notin \mathcal{F}$ if and only if there is some ultrafilter \mathcal{U} with $\mathcal{F} \cup \{D \setminus A\} \subseteq \mathcal{U}$.

(S6.7) Let D be a set and let $\mathcal{G} \subseteq \mathcal{P}(D)$. The following are equivalent.

- (i) Whenever $r \ge 1$ and $D = \bigcup_{i=1}^{r} C_i$, there exists $i \in [1, r]$ and $G \in \mathcal{G}$ such that $G \subseteq C_i$.
- (ii) There is an ultrafilter \mathcal{U} on d such that for every member A of \mathcal{U} , there exists $G \in \mathcal{G}$ with $G \subseteq A$.
- (S6.8) Let $\mathcal{U} \subseteq \mathcal{P}(D)$. The following are equivalent:
 - (i) \mathcal{U} is an ultrafilter on D.
 - (ii) \mathcal{U} has the finite intersection property and for each $A \in \mathcal{P}(D) \setminus \mathcal{U}$ there is some $B \in \mathcal{U}$ such that $A \cap B = \emptyset$.
- (iii) \mathcal{U} is maximal with respect to the finite intersection property. (That is, \mathcal{U} is a maximal member of $\{\mathcal{V} \subseteq \mathcal{P}(D) \mid \mathcal{V} \text{ has the finite intersection property}\}$.)
- (iv) \mathcal{U} is a filter on D and for any collection C_1, \ldots, C_n of subsets of D, if $\bigcup_{i=1}^n C_i \in \mathcal{U}$, then $C_j \in \mathcal{U}$ for some $j = 1, \ldots n$.
- (v) \mathcal{U} is a filter on D and for all $A \subseteq D$ either $A \in \mathcal{U}$ or $D \setminus A \in \mathcal{U}$.